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We study domain growth upon the light-induced phase separation �LIPS� in the spin-crossover
�Fe�ptz�6��BF4�2 single crystal under clarified conditions of intensity of light and temperature. Our primary
motivation is to model the relaxation behavior of a spin-crossover system under light in the spinodal regime.
At this end, we built a discrete spatiotemporal hierarchy of coupled equations, which can be regarded as an
efficient scheme for simulating the phase separation under light as well as for obtaining the equilibrium
mean-field solutions of lattice models having complex structures. We found that in the spinodal regime under
light, initial homogeneous states self-organize into spin domains after some incubation time. The evolution
patterns of the high- and low-spin domains revealed that the self-organization proceeds roughly in two regimes,
viz. diffusion of interfaces in the early stage followed by a growth regime. The analysis of the correlation
function shows that the characteristic domain size behaves as R�t�� t1/2, following the Allen-Cahn law.
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I. INTRODUCTION

The photoinduced phase transition �PIPT� has recently at-
tracted a great interest in condensed matter. A large variety of
PIPTs have been reported in literature, such as bidirectional
photoswitching in single crystals of polydiacetylenes,1

photoinduced metal-to-insulator transition,2,3 or neutral to
ionic phase transition in tetrathafulvalene-p-chloranyl
solids,4 photoinduced magnetization changes in Prussian
blue analogs �cobalt-cynanides�,5–8 light-induced colossal
magnetoresistance changes,9 light-driven isomerization
transformations from and ordered to a disordered state,10 and
so on. In these phenomena the effect of light results in a
change in the physical properties at the macroscopic scale,
through an important role of the electron-lattice �or charge
and orbital degrees of freedom� interaction,11–14 and the be-
haviors of the related materials are crucially influenced by
the competition or the coexistence of multiple phases. The
interaction also triggers the observed nonlinear photoexcita-
tion processes and the cooperative dynamics, usually evi-
denced by the presence of incubation regime in the photoex-
citation process and phase separation or spinodal
decomposition15–18 during their subsequent development un-
der light.

Among the photosensitive materials, the spin-crossover
�SC� �Refs. 19–29� complexes belong to the category of mo-
lecular solids which show under various constraints, such as
temperature variations,19 pressure,20–22 light irradiation,23–27

or magnetic field,28 a transition between the low-spin �LS,
t2g
6 eg

0� and the high-spin �HS, t2g
4 eg

2� states.29,30 For example,
Fe�II� SC materials31 are diamagnetic �S=0, LS� and para-
magnetic �S=2, HS� in the low- and high-temperature
phases, respectively. Upon the spin-crossover transition,
these materials undergo drastic variations of the metal-ligand
bond lengths ��0.2, i.e., �10%� and ligand-metal-ligand
angles �0.5–8°�,24,32 accompanied by important changes in
the electronic �spin-state� structure and orbital occupancy. It
results in appreciable changes in optical23,33,34 and
magnetic35–38 properties, offering, then serious potentialities

to be integrated in future optical data storage media or to be
used as displays.39–41 In addition, in many cases, elastic in-
teractions between the SC units are strong enough so as to
induce hysteresis at the thermal spin transition42 which then
occurs as a first-order phase transition.

Since the discovery of the so-called LIESST �light-
induced excited spin state trapping� effect43–45 in SC materi-
als, the SC complexes become textbook examples of photo-
switchable solids. The optical switching �direct or reverse
LIESST� is realized at low temperature using different wave-
lengths for the back and forth processes. The competition
between the optical and the thermal processes at low tem-
perature in cooperative materials led to the concept of light-
induced instability,46 from which originates the so-called
light-induced thermal hysteresis47 �LITH� and light-induced
optical hysteresis �LIOH� �Refs. 46 and 48� reported some
years ago.

The use of these materials as memories for data storage
requires however the control of the photo- or the thermoin-
duced elastic �or magnetoelastic� domains as well as the un-
derstanding of the physical mechanisms governing their oc-
currence. Phase separation was reported long time ago at the
thermal spin transition in SC solids,49 while photoinduced
phase separation was only recently observed.50–57 In most
of the experiments however, the phase separation is
reported50,56,58 upon photoexcitation of the solid, i.e. in the
metastable photoinduced state. In the case of the highly
cooperative SC solid Fe�btr�2�NCS�2H2O�btr
=4,4bis1 ,2 ,4triazole�, where the mechanism and kinetics of
thermally and light-induced spin transition have been inves-
tigated by single-crystal x-ray diffraction techniques, it was
evidenced by Pillet et al.58 that the nucleation, growth, and
coarsening mechanism of the photoinduced structural do-
mains follow the Avrami model.59,60 Similar studies52 have
been carried out on the very well documented title compound
�Fe�ptz�6��BF4�2 in the quenched rhombohedral phase, which
is strongly cooperative. Remarkably, �Fe�ptz�6��BF4�2 does
not show phase transition when the photoinduced phase tran-
sition is performed at low temperature.61 However, Mori-
tomo et al.53 observed a clear evidence of phase separation
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upon intense pulse laser excitation above 90 K. Moreover,
the relaxation behavior of the photoinduced HS state in
�Fe�ptz�6��BF4�2 follows the mean-field description, which
allows consideration of this system as a prototype for simple
theoretical investigations.

From the theoretical side, realistic models62,63 in which
the interaction between the SC complexes is mediated by the
lattice distortion have been addressed the problem of the
macroscopic phase separation upon the photoexcitation from
the LS to the HS state. Based on Monte Carlo simulations on
a model introducing the volume striction effects �a constraint
which fixes the total volume of the system�, Sakai et al.62,63

showed the existence of threshold intensity and incubation
period, where the latter corresponds to the nucleation time of
the HS domains. To the best of our knowledge, there is no
experimental study on the phase separation in the spinodal
regime, neither on the time dependence of the characteristic
domain size even in the recent elastic model64–66 investigat-
ing thermo- and photoinduced SC transition. In the present
study, we mainly focus on the theoretical description of the
phase separation in the specific situation of the spinodal re-
gime, occurring in the very narrow thermal region of the
LITH loop, under instability conditions.

The paper is organized as follows: in Sec. II we recall the
basic aspects of the light-induced phase separation; Sec. III is
devoted to the coupled map model; in Sec. IV we present the
obtained results on phase separation and discuss their rel-
evance in relation with available data of literature. In Sec. IV
we end with a conclusion and perspectives of this work.

II. LIGHT INDUCED PHASE SEPARATION:
BASIC CONSIDERATIONS

The observation of the LIPS effect needs to be in presence
of LITH loop and one of the most severe conditions of its
realization consists in the presence of a slow dynamics.
These aspects have been well investigated experimentally
�by magnetic measurements� and discussed so far in the case

of �Fe�ptz�6��BF4�2,51 yielding the results summarized in
Figs. 1�a� and 1�b� in which are depicted the dynamical po-
tential and the time dependence of the HS fraction in the
spinodal region.

In particular, Fig. 1�b� illustrates the time dependence of
the HS fraction under light at the best working temperature
of the spinodal decomposition �T=53.5 K� and at neighbor-
ing temperatures. It is clearly observed the existence of two
steady states at 53.5 K labeled �1� and �2�, corresponding to
rich-HS and rich-LS phases, with the respective concentra-
tions nHS=0.8 and nHS�0.2. In contrast, the curves labeled
�3� and �4�, prepared in the vicinity of the LIPS effect,
evolve with almost �up to fluctuations� invariant HS frac-
tions. In such case a subtle balance takes place between the
photoexcitation and the relaxation processes, leading to slow
down the dynamics, thus allowing to build up the elastic and
electronic correlations which give rise to phase separation.
As a consequence, the HS fraction remains macroscopically
constant, thus keeping its initial value �here nHS=0.6 or 0.4�
while the system fluctuates microscopically. This behavior
reminds the spinodal decomposition of binary A-B solids
where the order parameter is conserved, although the micro-
scopic mechanism of the phase separation in such a case
proceeds via diffusion processes due to the mobility of the
atoms.

A simple description of the LITH instability is provided
by macroscopic master equation �1�,46,67 based on the homo-
geneous mean-field approach, which combines light and
thermal relaxation processes as

dnHS�t,T�
dt

= I0�0�1 − nHS� − nHSk�e−Ea/kBTe−�nHS

= −
dU�nHS,T�

dnHS
. �1�

Where, Ea is an effective energy barrier, k�, the rate constant,
I0�0, the intensity of light, �=J /kBT �with J the effective
interaction between the SC molecules and kB the Boltzmann

FIG. 1. �Color online� �a� The dynamic potential associated with a bistable situation of the system under permanent irradiation, calculated
at different temperatures. In inset, the spinodal area is depicted by the light-red area. The light-blue region represents the �metastable� phase.
�b� Experimental time dependence of the HS fraction of �Fe�ptz�6��BF4�2 starting from inside the LITH loop at 53.5 K, and at neighboring
temperature curves �3� and �4� are associated to phase-separation regime after Ref. 51. The blue curves define the mean-field steady states.
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constant�, T the temperature and U the dynamical potential.
The best parameter values allowing to reproduce the experi-
mental LITH loop of Fig. 2 are: I0�0=5.510−4 s−1, k�

=1.510−3 s−1, Ea=663.5 K, and the effective interaction pa-
rameter J�251.5 K.

Due to the homogeneous mean-field character of Eq. �1�,
the subsequent macroscopic dynamical potential only pro-
vides the macroscopic steady states and the spinodals of the
system, between which phase separation occurs, as depicted
in Fig. 3�a�. It, of course, does not provide any description of
the phase separation evidenced by experimental data �curves
�3� and �4�� of Fig. 1�b�. Indeed, the stabilization of interme-

diate states during relaxation under light is an indication of
spontaneous pattern formation, in which probably the growth
is limited by the slow relaxation and the existence of pinning
centers around the defects of the crystal.

One interesting feature of the dynamical potential concept
lies with the possibility to derive the phase diagram of the
system, shown here in the inset of Fig. 1�a�. Similarly to the
case of binary mixtures �liquid or alloy�, where the order
parameter is the miscibility gap, it is possible to define an
effective ”driving force” as ��nHS�= �U

�nHS
.

Around the central temperature of the LITH loop, there
are two stable steady states, n1

��T��0.8, and n2
��T��0.2, re-

spectively, denoting the �HS-rich� and �LS-rich� phases. The
classical spinodal is then given by the solution of the follow-
ing equation:

���nHS�
�nHS

= I0�0 + k�e−Ea/kBTe−�nHS��nHS − 1� = 0, �2�

which leads to the spinodal area illustrated in the inset of
Fig. 1�a�.

III. COUPLED MAP MODEL

In this section we deal with the coupled map approach
which allows the description of the spatiotemporal behavior
of the SC solids using the simple kinetic Ising model. thus
we first recall the basic grounds of the phenomenological
Ising-like Hamiltonian, widely used in literature,67 the
Hamiltonian of which writes,

H = − J�
	i,j


sisj + �
i
�� −

kBT

2
ln g�si �3�

where, the parameter J�0 is the intermolecular �ferromag-
neticlike� coupling between spin-crossover molecules, and s
the fictitious spin with eigenvalues +1, −1 associated with
the two spin states, HS, LS, respectively. � is the ligand field

FIG. 2. �Color online� Experimental ��� and theoretical �full
and dashed line� light-induced thermal hysteresis loop of
�Fe�ptz�6��BF4�2 under constant irradiation, 450 nm, 7 mW /cm2,
after Ref. 51. The full blue line is the quasistatic limit of the LITH
loop and the dashed green line is the LITH loop obtained using the
experimental scan rate 0.035 K/min. The light-red area corresponds
to light-induced spinodal instability region. The steady-state values
of the HS fraction are nHS�0.2 and nHS�0.8. The transition tem-
perature of the static hysteresis loop is Teq�53.5 K.

FIG. 3. �Color online� �a� Comparative mean field and coupled map results for the time evolution of the mean value of the HS fraction
at T=53.5 K corresponding to the center of the LITH loop of Fig. 2. All the mean-field curves converge toward the two steady states, while
the coupled map curves �calculated for different initial microscopic configurations� lead to the stabilization of an intermediate state. �b� An
enlarged scale of the coupled map relaxation curves of part �a� showing the existence of macroscopic fluctuations on nHS attributed to the
onset of short-range correlations during the self-organization process. Parameter values are given in the text.
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splitting, i.e. the energy difference E�HS�−E�LS� of isolated
molecules, g the degeneracy ratio between the HS and LS
states. The dynamics of the model is introduced in67 follow-
ing the microscopic master-equation approach

�P�s�;t�
�t

= − �
j=1

N

Wj�sj�− sj�P�s� j,sj;t�

+ �
j=1

N

Wj�− sj�sj��P�s� j,− sj;t� , �4�

where P�s� ; t� is the probability of observing the system in
the configuration �s1 , . . . ,sN�= s� at time t and �P��s�;t��

�t is the
flux of the probability, while s� j denotes the configuration of
all spins excepted spin sj.

Under light, the transition rate W results from a combina-
tion of a thermal Arrhenius transition rate and an optical
pumping. It writes67 W�sj�= 1

2�0
��cosh 	Ej −sj sinh 	Ej��

+
I0�0

2 �1−sj�, where Ej =−J�isi+ ��−
kBT
2 ln g�, 1

� = 1
�0

e−	Ea
0
.

The expectation value of the jth spin, defined as 	sj

=�s�sjP�s� ; t�, is connected to the local HS fraction at site j

as nj =
1+	sj


2 . In the Bragg-Williams approximation, the sys-
tem probability P�s� ; t� is written as the direct product over
all sites of the singlet probabilities p�sj ; t�, subject to
�sj

p�sj ; t�=1 for all sites. We take the singlet probability
functions as the dynamic variables which describe the time
evolution of the system. It is then deduced that the time
dependence of the local HS fraction, at low temperature,
obeys the following set of equations

dnj

dt
= I0�0�1 − nj� − K�T�nj exp�− ��

k=1

z

nj+k� = −
�U

�nj
.

�5�

The frequency factor K�T�, is given by K�T�=k� exp�
−	Ea�, where k�=2 /�0 ��0 defines the molecular time scale
of the relaxation process�; the effective energy barrier Ea

=Ea
0−�−zJ+

kBT
2 ln g, �=J /kBT, and k is a subscript running

over the z neighbors of site j �j=1,N�, N being the number
of molecules. The nonlinearity of the hierarchy of Eq. �5�
prevents any rigorous analytical solution.

Since Hamiltonian �3� involves interactions among differ-
ent sites, the distribution functions at different interacting
sites are coupled to each other through the transition prob-
abilities, leading finally to a self-consistent set of coupled
differential Eq. �5�. Here, we solve numerically the hierarchy
of coupled differential Eq. �5� using the Runge-Kutta
method, which provides a good relative accuracy ��10−4� on
the local HS fraction n.

IV. RESULTS AND DISCUSSION

Let us apply the present mapped model to simulate the
experimental situation of �Fe�ptz�6��BF4�2, prepared in the
spinodal region. We recall, here, that the elastic interactions
as well as the crystal imperfections �such as existence of
local barriers due the orientational disorder of the BF4, and
existence of dislocations upon transition� are not considered

in this problem. Concretely, we prepare the system at time
t=0 in a random state with average value n̄�0.5. Three
procedures have been used to prepare this initial state: �i� by
assigning randomly the value nj =0 �LS� or nj =1 �HS� at
each site; �ii� by distributing uniformly the probability value
nj between 0 and 1; and finally; �iii� by assigning randomly
the value nj �0.2 or nj �0.8 �the steady-state values of the
HS fraction� at each site. Then the probabilities at each site
evolve following Eq. �5�.

We have used the parameter values I0�0=5.510−4 s−1,
k�=1.510−3 s−1, Ea=663.5 K, �=J /kBT=4.7, �T=53.5 K�,
derived from the photoexcitation and relaxation experiments
on �Fe�ptz�6��BF4�2, as already reported in Ref. 51. It is clear
that the system prepared in a perfectly homogeneous initial
state �equal values of the HS fraction for all sites� would
merely follow the macroscopic behavior predicted by the
homogeneous mean field by construction of the model.

In practice we consider a 200
200 square lattice with
periodic boundary conditions, and assigned for the tempera-
ture, the value T=53.5 K of the transition temperature of
LITH loop �see Fig. 2�. The time increment was typically
�t=1 s. We have checked that lowering the time step did
not alter the results, but only increased the computing time.

Figure 4 shows a typical patterning of the system, com-
puted after an initial state made of a random distribution of
n-values around the steady-state values n�0.2 and n�0.8.
The onset of well-developed patterns requires �5
104 s.
The obtained structures are made of HS-rich and LS-rich
areas, with local average values approaching the steady
states values of Fig. 3�a� on increasing time. After 106 s, the
patterns have coarsened to such an extent that finite-size ef-
fects can be expected.

In Fig. 5 we draw the variation of the HS fraction along
the horizontal line from �x=1, y=1� to �x=200, y=1� at
same times than those of Fig. 4. After 105 s, it is remarked
that domain walls �the thickness of which is in the range

FIG. 4. �Color online� Instantaneous patterns of the HS fraction
during the phase-separation process under light, starting from a ho-
mogeneous initial state at time t=0. The dark �yellow, colored�
regions represent the rich-LS �rich-HS� phase cells. A clear evi-
dence of self-organization of the system into spin domains is ob-
served after �4
104 s.
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10–40 sites� are formed and do not show sizable change.
This defines an asymptotic behavior of the system typically
beyond 105 s.

A. Correlation function and domain growth

We now analyze in more details the predictions of the
model. It is clear that future experiments should aim to evi-
dence the scaling laws and the structure factor which are
derived in the present section. To characterize the domain-
growth process, we calculate the circular averaged autostruc-
ture factor S�k , t�, defined by the average68,69

S�k,t� =��
�=1

N

�
m=1

N

�n�m,t� − n̄��n��,t� − n̄�


exp�− k� . �r�m − r����� , �6�

where the wave vector is spanned over a thin circular shell in
k space. In the above expression, n̄ is the site-averaged value

of n���, i.e., n̄=L−2�i=1
L2

n�i� �L=200� corresponding to the
macroscopic HS fraction, and the symbol average 	 
 indi-
cates an average over different runs of the number of random
seeds. The typical domain size, R�t�, is evaluated as the in-
verse of the first moment of the circularly averaged structure
factor, i.e.,

R�t� = k̄�t�−1 =
�0

�dkS�k,t�
�0

�dkkS�k,t�
. �7�

On the other hand, the structure factor, S�k , t�, scales as
S�k , t�=R�t�d��k
R�t��, where � is a time-independent uni-

versal function. Numerically, k̄�t� is computed by consider-
ing all k� values up to half of reciprocal-lattice size. Thus, k�

take the values k� = �2��xu�x+2��yu�y� /N �for a lattice of size
N
N�, where �x, �y have integer values between − N

2 and
N
2 −1 and u�x and u�x are unit vectors in the directions x and y.
It is worth noticing that even including the entire reciprocal

lattice in the calculation of k̄�t�, the results remain almost
unchanged. We have evaluated the time dependence of aver-
age domain size using Eq. �7� and checked the scaling forms
of the autostructure factor.

Another important quantity which has been used to deter-
mine the domain size distribution as well as their time evo-
lution is the real-space two points correlation function
C�r , t�, given here by

C�r,t� = 	n��� ,t�n��� + r�,t�
 − 	n��� ,t�
	n��� + r�,t�
 , �8�

where n��� , t� is the HS fraction at a discrete site �� at time t;
and the brackets refer to an averaging over independents runs
and noise realization.

The normalized domain size distribution, P�R�t� ; t�,
where R� �0,�� and �0

�P�R , t�dR=1, is obtained by exam-
ining the nHS�0.5 crossings of the HS fraction profiles
�shown in Fig. 5� along horizontal cross sections of the
lattice.70 In the scaling regime, the correlation function ex-
hibits a dynamical-scaling form C�r , t�=g�r /R�, where the
master function g�x� is time independent.70 Figure 6 super-
poses data from different times for C�r , t� /C�0, t� vs r /RC,
where RC is defined as the distance over which the correla-
tion function decays to half of its maximum value. It is
clearly observed that the data collapse is quite good for times
t�50 000. The corresponding dynamical scaling for the do-
main size distribution �not shown here� is P�R , t�
=R−1h�R /RP�, where the characteristic length scale, RP is
defined from the domain distribution function as RP= 	RC
,
and where a good scaling is also obtained in the late stage of
the relaxation under light. It is worth noticing that in the
scaling regime, RC and RP are equivalent up to prefactors.

We now turn to a �quantitative� discussion on the time
dependence of the length scale R�t� obtained either from the
two points correlation �or the autostructure factor� and the
domain size distribution. Our results are consistent with pre-
vious studies based on cell dynamics, Monte Carlo simula-
tion and molecular-dynamics simulations, related to the spin-
odal decomposition in quenched disordered systems, using
Ising Hamiltonians71 or on two-dimensional binary fluid
mixtures,72 where it is expected that the characteristic do-

FIG. 5. �Color online� Variation of the order parameter along the
horizontal line from �x=1, y=1� to �x=200, y=1� during the self-
organization process of Fig. 4. Black dots correspond to the initial
�t=0� state and green squares to the configuration at time t=5

104 s and the full lines for t105 s. Well defined walls �about
10–40 sites� are formed by about 105 s.

FIG. 6. �Color online� Dynamical scaling of the normalized spa-
tial correlation function, C�r , t� /C�0, t� vs r /RC�t�, where RC�t� is
the distance over which the correlation function falls to half its
maximum value. Well defined scaling regime is obtained after
5
104 s.
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main size behaves as ��t− t0�1/2 for nonconserved order pa-
rameters.

Our results on the time evolution of the average size do-
main, in the scaling regime, are shown in Fig. 7. Two suc-
cessive regimes have been identified as �i� a nucleation re-
gime, for which the domain size is more or less time
independent in the early stage of evolution and, �ii� an Allen-
Cahn regime71 of growth in the late stage. For the latter, we
found the value �0.47�0.01 for the dynamical growth ex-
ponent in the scaling regime, as depicted in Fig. 7. This
result is consistent with the Allen-Cahn growth law68,69 on
nonconserved order parameters which gives a dynamical ex-
ponent of 1/2.

One tool helping in the understanding the microscopic
mechanism governing the obtained self-organization, is the
analysis of time evolution of the distribution, D�nHS�, of the
HS fraction during the phase-separation process. It is worth
to notice that we start here from a spatially inhomogeneous
state characterized by a bimodal distribution of random val-
ues of the HS fraction distributed around the steady states
nHS�0.2 and nHS�0.8. Incidentally, we point out that other
simulations �not shown here� performed with different initial
states, characterized by a Gaussian distribution around nHS
�0.5 or a flat distribution of states in the interval nHS
� �0,1�, have led to similar results as those obtained here.

The time dependence of D�nHS� corresponding to the
snapshots of Fig. 4 is depicted in Fig. 8. The results confirm
the existence of a first relaxation regime taking place during
the early stage of the spinodal decomposition for times t
�10 000 s, upon which the double-well structure of D�nHS�
vanishes and collapses at nHS�0.5, leading to the onset of a
new and sharp distribution centered around nHS�0.5.

Actually, we have identified that it corresponds to the
maximum of configuration entropy, S=−�ipi�t�ln pi�t�, the
time dependence of which is represented in Fig. 9. We point
out that this regime is also partially observed in the relax-
ation curves of Fig. 2�a�, where an initial fast relaxation re-
gime is identified. During this fast relaxation from the inho-

mogeneous state �in which large concentration gradients of
the HS fraction exist� to the homogeneous state, the SC cells
behave quasi-independently from each other and the system
follows more or less a stretched exponential relaxation. The
related �domains� appear and disappear spontaneously due to
thermal fluctuations and are difficult to characterize by a
scaling function.

Then, as seen in Fig. 8, once the first regime is achieved,
a new regime starts for which the distribution of density of
states broadens and then splits, leading finally to a sharp
bimodal distribution. More precisely, from t=104 s, the
phase separation starts through a new regime corresponding
to diffusion of interfaces, at which a broad peak located
around nHS�0.5 develops and splits. This splitting takes
place at t�3
104 s, and reveals a situation where the do-
mains sizes have the same order of magnitude as that of the
interfaces widths. Later on in the growth process, i.e. from
t�5
104 s, well formed macroscopic domains with char-

FIG. 9. Time dependence of the configuration entropy during
the self-organization process. A nonmonotonic behavior is obtained
corresponding to the existence of two regimes, attributed to nucle-
ation �t�4
103 s� and domain growth �t�4
103 s�.

FIG. 7. �Color online� Time dependence of the logarithm of the
characteristic domain length scale. The solid line is the best linear
regression, giving a dynamical exponent of 0.47�0.01�, which is
consistent with the Allen-Cahn growth law.

FIG. 8. Instantaneous distributions of the HS fraction corre-
sponding to the snapshots of Fig. 4. For t=106 seconds, D�nHS�
sharply peaks around nHS steady states values; a clear indication of
the self-organization.
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acteristic sizes bigger than the interface widths appear, for
which it corresponds a double peak distribution which be-
comes sharp and narrow at longer times.

Moreover, a deep examination of the time dependence of
D�nHS� indicate that the domains of the LS phase are formed
after 5
104 s, while the domain structure of the HS the
phase �dense phase� self-organize at longer time t�105 s,
following a regime of growth. This behavior seems to be
reminiscent with that observed in the relaxations toward the
LS-rich and HS-rich steady states form the respective LS and
HS initial states in the homogeneous case �shown in Fig.
3�a�� where the same tendency is observed.

On the other hand, it is interesting to notice that although
the utilized dynamics in the master equation was that of a
nonconserved order parameter, our simulation leads to an
almost constant HS fraction �up to fluctuations� during a long
time interval, necessary to the phase separation, as reported
in Fig. 3. This behavior can be explained by the existence of
the fine balance between the optical pumping and the
Arrhenius transition, slowing down the relaxation of the HS
fraction, is qualitatively in good agreement with the experi-
mental observations of magnetism under light, reported in
Figs. 1�a� and 1�b�.

B. Dynamic potential and driving force of
spinodal decomposition

From a general point of view, phase separation has been
widely investigated using phase field models73,74 and Cahn-
Hilliard equation,75,76 introduced in the last decades. It is
well known from these models that interface dynamics play a
crucial role in the phase-separation process, as for example,
for dendritic growth.77–81 These classical models, such as
phase field method which uses a �mesoscopic� local thermo-
dynamic description coupling a local-order parameter to a
diffusion field,73,74 consider the problem in terms of partial
differential equations, involving macroscopic quantities such
as surface tension, capillary length and diffusion constants,
and are efficient in describing the interfaces dynamics.

Thus, a useful approach to describe the mechanism of the
present light-induced spinodal decomposition, may be ob-
tained through an analysis of the dynamic potential U�n� in
the phase field approach. Let us define the field u�r��
=u�n�r�� ,�� n�r��� as the dynamic potential density �similarly
to the density of free energy at equilibrium� at position r�. The
homogeneous dynamic potential, expressed as, u�r��
=u�n�r�� ,�� n�r��=0�, is the density of the mean-field dynamic
potential given by Eq. �1�. Expanding the dynamic potential
density around its homogeneous value in powers of gradi-
ents, gives at the first order

u�n,�� n� � u�n,0� + �� nK�� n �9�

where K is a tensor, with components Kij =
1
2

�2u
���n/�xi����n/�xj�

.
Assuming that the dynamic potential does not depend on the
gradient directions, K becomes a symmetric tensor. Further-
more, in the isotropic material �or cubic� that is not the case
of the title compound �Fe�ptz�6��BF4�2 which has a rhombo-
hedral group symmetry, K is a diagonal tensor with equal

components K. The dynamic potential density is thus ap-
proximated as

u�n�r��,�� n�r��� = uhom�n� + K��� n�2, �10�

where K is a coefficient which is proportional to the correla-
tion length. It is worth to notice that Eq. �10� assumes im-
plicitly that the dynamic potential energy varies smoothly
from its homogeneous value as the magnitude of the HS
fraction gradient increases from zero.

Before discussing the different contributions of Eq. �10�,
we would like to mention that although similar developments
on phase field models are widely used in literature74,75 most
of them are based on the expansion of the equilibrium free-
energy functional. In contrast, in the present case, the func-
tional U�n�r��� is a nonequilibrium quantity since it contains
light effect.

Equation �10� allows evaluation of the contributions to
interfaces in systems that undergo spinodal decomposition,
through the existence of two competing �energetic� contribu-
tions to the dynamic potential. Indeed, the gradient term in
Eq. �10� tends to spread the interface region and thereby
reduces the gradient as the HS fraction changes between its
steady states values in adjacent phases. The first contribution
�uhom�n�� derives from the increased homogeneous dynamic
potential associated with the maximum of U�n� �see Fig.
1�a��, which tends to narrow the interface region. Thus the
simple model of Eq. �10� contains the ingredients of diffuse
interfaces where the order parameter, n, varies smoothly in
space from one phase to the other. The study of the rate
change of the total dynamic potential, U=�u�n�r�� ,�� n�dV
�where V is the volume of the system�, with respect to its
current order-parameter field, n�r� ; t� leads after some math-
ematical developments �assuming that the boundary integrals
are negligible compared to the volume integral for large sys-
tem� to the following change, �U, in the total dynamical
potential when the order parameter changes by a small
amount �n= ṅ�t, given by

�U = �
V
� �uhom

�n
− 2K�2n�dV = �

V

��r�� dV . �11�

Then ��r�� the localized density of dynamic potential change
due to variation in the order-parameter field, is the driving
force for changing n.

This equation is the starting point for the development of
the kinetic equations in the phase field approach of the
present problem. Indeed, combining Eqs. �5� and �11� yields
the classical Allen-Cahn equation

�n

�t
= − M� �uhom�n�r���

�n
− 2K�n��2n� , �12�

where M is a positive kinetic coefficient related to the mi-
croscopic rearrangement kinetics. According to Eq. �12�, the
HS fraction n will be attracted to the local minima of uhom.
Depending on the initial variations in n�r��, the system may
seek out at a rate controlled by M. The second term on the
right-hand side in Eq. �12� will govern the profile of the
order parameter, n�r��, at the antiphase boundary and will
cause interfaces to move toward their center of curvatures82
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for which n�0.5. This term is then at the origin of the driv-
ing force leading to the appearance of a sharp peak around
the value nHS�0.5 in the distribution D�nHS� of Fig. 8. The
first term tends to narrow the interface region and drives the
phase separation.

C. Discussion

We now proceed to a general discussion on the domain
growth in systems with nonconserved order parameters. The
evolution of the system from an initial nonequilibrium con-
figuration towards a final state by going through a number of
intermediate states can be understood in terms of most prob-
able paths in the phase space. The probability associated with
a particular path is given by the usual statistical weight of
involved configurations, which is mainly fixed by the
highest-energy configuration encountered along the path. In
the present case, the system is �prepared by light� in an initial
state, with equal numbers of up and down spins randomly
distributed through the lattice. The system starts ordering
locally, and soon develops a number of up- and down-spin
domains, competing with each other to grow. As time goes
on, the number of domains decreases due to growth in size of
the remaining domains. To consider this coarsening, it is in-
structive to consider the shrinking of a single square domain
of size L
L in the case of the spin-1/2 ferromagnetic
nearest-neighbor Ising model with zero-magnetic field. If we
take the strength of the nearest-neighbor interaction to be J,
the energy cost to flip a spin inside a LS domain is 8J. On the
boundary however, this cost is 4J, while it is 0 at the corners
of the domain. Since a corner spin can be flipped without
energy cost, the most probable path for domain shrinking
begins with flipping of one corner spins, which creates two
new corners. This flip is followed by a random walk of the
corner along an edge, each step of which has no energy cost.
Thus an edge of size L is eliminated in a time proportional to
L2. In fact, this time can be calculated accurately if one con-
siders a one dimensional random walk with probability p to
jump right or left and a probability q of no jumping. The
resulting analytical expression for the first-passage probabil-
ity of covering a distance L in t steps is a generalization of a
formula due to Lagrange,83 which yields t�L2 behavior even
at rather small values of L. The above considerations imply a
coarsening length scale L�t�� t1/2, providing an equivalent
way of interpreting curvature-driven growth in the present
context of discrete lattice models.

An important step toward understanding growth laws in
systems with nonconserved order parameter is due to Lai et
al.,84 who proposed four classes of systems, determined by
the dependence of the energy barrier to coarsening on the
characteristic domain length. The growth of the domains is
driven by a curvature-reduction mechanism as

dL�t�
dt

=
a�L,T�

L�t�
, �13�

where the diffusion constant a�L ,T� depends on the domain
scale L and temperature. Two cases are interesting to quote:

�1� for systems for which a�L ,T� is independent of L and
remains nonzero as T→0, there exists relaxation paths that

have no energy barrier and the nature of the relaxation does
not depend on the coarsening length scale. The Ising model
with usual Glauber or Metropolis transition rates clearly be-
longs to this first case. In general, L�t�� t1/2 for this class of
systems.

�2� In the Ising-like model with local energy barriers
�Arrhenius transition rates�, although the minimum-energy
barriers are again independent of L, the elementary diffusion
process �a corner moving along an edge� has a local energy
barrier Ea

0, so that a�L ,T�=a0 exp�−Ea
0 /kBT�. In this case, we

also obtain a t1/2 law, but with a time scale �=�0 exp�
−Ea

0 /kBT�. It is clear from the above equation that domain
growth will be slow for this type of systems with L�t� con-
stant for times t��, where ��4000 s in the present study.
For larger times, the growth law is L�t���t /��1/2, corre-
sponding to the Allen-Cahn law. These predictions are in
good agreement with the behavior extracted from our nu-
merical simulations.

V. SUMMARY AND CONCLUSION

In summary, we presented a dynamic coupled map
method for �simulating� dynamic process of light-induced
phase separation in SC solids under permanent irradiation.
The method is based on a microscopic model describing the
SC system, combined with a master equation governing the
time evolution of the probability distribution functions for
lattice models. Its effectiveness lies in the fact that �i� the
equations of motion find again the well-known macroscopic
equation already used to describe the homogeneous system,
and �ii� it allows description of the phase separation under
light as well as the spatial behavior of the HS fraction during
the spinodal decomposition process. In our best knowledge,
this is a first time where such problem is addressed in the
field of SC studies. In addition, although we restricted our
studies to the low-temperature region, the model can be natu-
rally extended to the description of the spatial dependence of
the HS fraction in case of equilibrium first-order transition,
accompanied with a hysteresis loop. At the beginning of this
paper, we mentioned that one of the motivations of this work
was to propose a microscopic model for describing the light-
induced phase-separation process in SC solids, avoiding the
macroscopic phase field descriptions, such as time-dependent
Ginzburg-Landau models. However, it was possible to dem-
onstrate that the discrete scheme of evolution Eq. �5� can be
connected with well-known field-theoretic models85 through
a generalized expression of Eq. �12�. A more detailed study
on these aspects, necessary to calculate the dynamics of the
interface and their structure will be published elsewhere.

As closing remarks, we discuss briefly the limitations of
the local dynamic mean-field approximations. First, it shares
all the pitfalls of mean field since it neglects the fluctuations.
Thus it is quite inappropriate to apply such method to the
critical region or other situations where fluctuations domi-
nate the dynamics. Usually for most domain-growth pro-
cesses resulting from a deep thermal quenching of the sys-
tem, the effect of fluctuations are not important and the
domain growth is dominated by the nonlinearity of the dy-
namics. That is not the case for systems quenched under
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light,51 where the combination of the slow relaxation of the
order parameter and the fluctuations of the intensity of light
may induce important features in the dynamics, like the
Barkhausen noise.51 To tackle such problems, it is necessary
to extend the present approach by adding, for example, a
conservative Langevin noise contribution, which can be in-
serted in kinetic Eq. �5�. It is expected that noise changes the
interface profiles �side branches may develop for example� as
well as their dynamics. That is the next target of this work.
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